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INTRODUCTION

 Research related to business often uses regression analysis to predict future outcome. The ordinary least squares(OLS)

method is the most popular technique in regression analysis due to its optimal properties and ease of computation.

 However, the OLS estimates are much affected when multicollinearity (when two or more independent variables are

highly correlated) is present in a data.

 Its result in wrong sign problem, produce large standard errors of regression estimates (Midi, Bagheri and Imon.,

2012, Comp. Stat &Simu.).

 Relying on the OLS method may give inefficient estimates and inaccurate predictions and causing uncertainties in

predicting future outcomes.

 VIF commonly used diagnostic method to identify multicollinearity.VIF<5 indicate no multicollinearity. VIF between

5 and 10 moderate and severe multicollinearity, VIF>10.



 Many are not aware that high leverage point which fall far from majority of the explanatory variables, can

induce or disrupt multicollinearity pattern in a data. Observations responsible for this are known as high

leverage collinearity influential observations (HLCIO) (Bagheri, Midi and Imon, 2012, Comp. Statistics,

Simu.& Comp., 2011, Math. Prob in Engineering).

 HLP that induce multicollinearity are referred as HLC-Enhancing Observations while those that reduce

multicollinearity in their presence are called HLC-reducing observations(Midi and Bagheri, 2011, Math

Prob in Engineering; Bagheri, Midi and Imon, 2012).

When multicollinearity is due to highly correlated predictor variables, ridge regression, latent root

regression and Jackknife ridge regression can be used to remedy this problems (Hoerl and Kennard, 1970,

Singh et al. , 1986).
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 Bagheri, Midi and Imon, (2012), Comp. Stat. Simul & Comp. pointed out that when multicollinearity

is caused by HLCEO, those suggested method is inappropriate.

 Not much research is done on the remedy of HLCEO. Imon and Khan (2003) suggested deletion of

suspected HLPs from the analysis using Generalized potential (GP) method.

 According to Midi et al. (2009), the GP is not successful in detecting genuine HLPs.

 Since HLPs is the caused of multicollinearity, to remedy the problem of HLCEO, the HLPs first need

to be correctly identified and their effect on the parameter estimates, need to be reduced.

 Hence, robust methods which are known to be resistant to HLPs need to be employed.
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OBJECTIVES

 To develop a method of identification of HLCIO that can change multicollinearity

pattern of data: HLC Enhancing and HLC Reducing Observations.

 To establish a robust method that is resistant to HLPs.

 To propose correct estimation method to remedy the problem of HLCEO so that

future outcome can be predicted with at least 95% certainty.

 To apply the proposed method to real data.



OUTLIERS IN REGRESSION

 In statistical Data Analysis-Only one type of outlier.

 But in Regression, several versions of outliers;

 residual outliers –observations with large residuals

 vertical outliers –observations outlying in y-coordinate

 high leverage points-observations outlying in x-coordinate
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METHODOLOGY

 Two steps is proposed to analyse a dataset for multiple linear

regression.

 Step1 : Identify the existence of HLCEO

 Step 2: Apply Generalized-M estimator based on fast

improvised GMT estimator for data having HLCEO.



Step 1:DEVELOP  COLLINEARITY INFLUENTIAL OBSERVATION DIAGNOSTIC MEASURE 

BASED ON A GROUP DELETION APPROACH

 High leverage points can induce or disrupt multicollinearity.

 Observations responsible for this problem are generally known as collinearity-influential observations.

 Development of collinearity-influential observation diagnostic measures has not been reported extensively in the 

literature (Hadi, 1988; Sengupta and Behimasankaram, 1997; Bagheri and Midi, 2012, Comp. Stat., Bagheri et al., 

Math Prob in Eng, 2012, Midi&Bagheri, 2015, Statistics& Operation Research J.).The weakness of Hadi and 

SengupataBehimasankaram (lack of symmetry and no cutoff points) motivated us to propose another measure, .

 The proposed high leverage collinearity-influential measures based on DRGP (HLCIM (DRGP)), denoted as 

𝛿𝑖
(𝐷)

𝑎𝑛𝑑 𝑑efined and summarized as:

𝛿𝑖
(𝐷)

=

𝑙𝑜𝑔
𝑘(𝐷)

𝑘(𝐷−𝑖)
𝑖𝑓 𝑖 ∈ 𝐷 𝑛(𝐷) ≠ 1

𝑙𝑜𝑔
𝑘(𝐷)

𝑘
𝑖𝑓 𝑖 ∈ 𝐷 𝑛 𝐷 = 1

𝑙𝑜𝑔
𝑘(𝐷+𝑖)

𝑘(𝐷)
𝑖𝑓 𝑖 ∈ 𝑅

where D is the group of multiple hlps diagnosed by DRGP(ISE), n(D) is the size of the D group.𝑘(𝐷−𝑖) indicate the 

condition number of the X matrix without the entire group of D minus the ithhlps where i belongs to D group.



Diagnostic Robust Generalized Potential based on Index Set Equality (ISE) 

to Detect HLP

Lim and Habshah (Computational Statistics,2016) (see also Habshah, Norazan et al. (2009), J. of Applied

Stat., Mazlina & Habshah (2015), Pak. J of Statistics) formulated fast diagnostic robust generalized

potential (DRGP-ISE) to detect multiple high leverages. It consists of two steps.

Step 1) suspect high leverage points are determined by the robust

Robust Mahalanobis Distance based on Index Set Equality:

where and are robust locations and covariance estimtes of the ISE, respectively.

A set of ‘good’ cases ‘remaining’ in the analysis denoted by R and deleted by D

i = 1, 2, …, n
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Index Set Equality (ISE)

The running time of MVE ,MCD and even Fast MCD is still very long. To reduce the running time, we  proposedusing

Index Set Equality (ISE) which is 

another new technique from fast MCD. Denoting                                                   as the index set that correspond to the 

sample items in Hold when their Mahalanobis Distance squares are arranged in increasing order and                                        

the index set that correspond to the sample items in Hnew. The ISE is summarized 

as follows;

Step 1: Select an arbitrarily a subset Hold containing  h different observations.

Step 2: Calculate the average vector          and covariance matrix           of all 

observations belong to Hold.

Step 3:  Compute                                           for  

Step4:  Arrange              for                         in increasing order

where     is permutation equal  to {1,2,…,n}.

Step5:  Construct                                                           

Step 6: If              , let                   and                  ,compute            and let 

then go to step(3) .Otherwise, the process is stopped .

The running time of ISE is much faster than fast MCD because ISE only involves a comparison of two index sets. 
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 Step 2) Diagnostic Approach used to confirm the suspected groups

 Where

 An observation is considered as HLps if p*
ii is large :

p*
ii > Median (p*

ii) + c MAD (p*
ii)

 Where c can be taken as a constant value of 2 or 3.



COLLINEARITY INFLUENTIAL OBSERVATION DIAGNOSTIC MEASURE 

BASED ON A GROUP DELETION APPROACH

 Step 3:The proposed high leverage collinearity-influential measures based on DRGP (HLCIM 

(DRGP)), denoted as 𝛿𝑖
(𝐷)

𝑎𝑛𝑑 𝑑efined and summarized as:

𝛿𝑖
(𝐷)

=

𝑙𝑜𝑔
𝑘(𝐷)

𝑘(𝐷−𝑖)
𝑖𝑓 𝑖 ∈ 𝐷 𝑛(𝐷) ≠ 1

𝑙𝑜𝑔
𝑘(𝐷)

𝑘
𝑖𝑓 𝑖 ∈ 𝐷 𝑛 𝐷 = 1

𝑙𝑜𝑔
𝑘(𝐷+𝑖)

𝑘(𝐷)
𝑖𝑓 𝑖 ∈ 𝑅

where D is the group of multiple hlps diagnosed by DRGP(ISE), n(D) is the size of the D group.𝑘(𝐷−𝑖)

indicate the condition number of the X matrix without the entire group of D minus the ith hlps

where i belongs to D group.



Index
(-.008) (-.004) (-.019)

(-0.048) (-0.021) (-.022)
1 13.221 -0.027 -0.012 -0.228

2 13.183 -0.03 -0.013 -0.241

3 13.289 -0.022 -0.01 -0.234

4 13.18 -0.03 -0.013 -0.254

5 13.188 -0.029 -0.013 -0.248

6 13.185 -0.03 -0.013 -0.24

7 13.166 -0.031 -0.014 -0.248

8 13.237 -0.026 -0.011 -0.227

9 13.235 -0.026 -0.011 -0.242

10 13.327 -0.019 -0.008 -0.226

11 13.06 -0.039 -0.017 -0.29

12 13.424 -0.012 -0.005 -0.272

13 13.035 -0.041 -0.018 -0.319

14 17.125 0.26 0.101 -0.391

15 13.67 0.006 0.003 -0.005

16 13.752 0.012 0.005 0.01

17 13.644 0.004 0.002 0.002

18 13.589 0 0 -0.003

19 13.669 0.006 0.003 -0.002

20 13.708 0.009 0.004 -0.005

. . . . .

. . . . .

. . . . .

70 13.582 0 0 -0.004

71 13.611 0.002 0.001 -0.006

72 13.608 0.002 0.001 -0.003

73 13.584 0 0 -0.002

74 13.611 0.002 0.001 -0.002

75 13.651 0.005 0.002 0.009

The well-known Hawkins, Bradu, and Kass (1984)

data is used to show the merit of our proposed

method.This artificial three-predictor data set

contains 75 observations with 14 high leverage

points (cases 1-14); cases 1-10 bad hlp, cases 11-14

good hlp.

Table 1. Collinearity-influential measures for Hawkins-

Bradu-Kass data



Multicollinearity Diagnostic Measures

Classical Variance Inflation Factor

Marquardt [11] developed a diagnostics method which is known as variance inflation factor 

(CVIF) to detect multicollinearity in a data. The CVIF is the most popular method to 

identify multicollinearity and it is given by:

where      is the coefficient of multiple determination when  is regressed on other         

variables in the model, using the Ordinary Least Squares (OLS) method.

moderate multicollinearity among all of predictors

severe multicollinearity (Belsley et al.[1]). 

.



Table 2. Collinearity diagnostics for Hawkins-Bradu-Kass data

Diagnostics Status 1 2 3

Pearson correlation 

coefficient

Original data r12= 0.946 r13= 0.962 r23= 0.979

Without observations

1 –14
r12= 0.044 r13= 0.107 r23= 0.127

VIF > 5

Original data 13.432 23.853 33.432

Without observations

1 – 14
1.012 1.017 1.027

Condition index 

of X matrix > 10 

Original data 13.586 7.839 1.00

Without observations 

1 – 14
3.275 2.946 1.00



Step 2: Proposed GM estimator to remedy HLCEO

For the general linear regression model with the usual assumptions, the GM

estimator is defined as a solution of normal equations which  is given by,

Where            is a derivative of redescending function (weight function) and          .                          is the 

initial weight element of the diagonal matrix W,      is the scale estimate, and      is the vector of parameters 

estimates. 

̂



Coakley and Hettmansperger (1993) proposed GM6 estimator which employs Robust 

Mahalanobis Distance (RMD) based on Minimum Volume Ellipsoid (MVE) or Minimum 

Covariance Determinant (MCD)  to identify high leverage points and subsequently  initial   

weight of this GM estimator is formulated based on RMD which is given by:



The weakness of this initial weight function

- 1. it tends to swamp some low leverage points (Bagheri and Habshah, Transaction in Statistics,2015), 

some of good leverages (GLPs) will be given low weights.  Hence, the efficiency of the GM6 estimator 

tends to decrease with the presence of good leverage points. GLPs have no effect or have very little effect 

on parameter estimates and may contribute to the precision of parameter estimation(Rousseeuw, and Van 

Zomeren, 1990).  On the other hand, BLPs have high impact on the regression estimates. This is the 

reason why the GM6-estimate is less efficient.

- 2.GM6 estimator takes too much computing time.



Hence, Midi, Shelan et al. (2021) propose a relatively easy and fast  method to detect bad leverage points 

and outliers.  Then only minimize the weights of bad leverage points and outliers.  

The propose method is based on the procedure of  constructing diagnostic plot of Alguraibawi, Midi and 

Imon (Math Problem Engineering, 2015)(see also Midi & Bagheri, 2015, Statistics& Operation Research J) 

for classifying observations into  outliers, good and bad leverage  points, with slight modification to make it 

fast by employing RMD based on Index Set Inequality (ISE). 



The  proposed GM-FIMGT estimator is almost similar to that of Dhhan, Midi, Sohel (Journal of Appl Stat. 

2016).  The only different is the calculation of the initial weight function. Their weight is based on support 

vector regression method. The algorithm of our proposed GM estimator is summarized as follows:



The algorithm of  the classification of observations into outliers and bad 

high leverage points  is summarized as follows:

Classification Step I: Identify the suspected vertical outliers by using the robust Reweighted Least Squares 

(RLS) based on Least Median of Squares (LMS).  

Denote these suspected outliers by L set.

Classification Step II: Identify the suspected high leverage points (HLP) by using Diagnostic Robust  

Generalized Potential based on Index Set Inequality (DRGP (ISE))  proposed by Lim and Midi (2015).

whereby, the Robust Mahalanobis Distance that they employed  is based on Index Set Inequality (ISE). 

Denote this set  of suspected HLPs by H set.

Rohayu (2013) has proved that the ISE provides the same final location and scale estimator as that obtained 

by using MCD if the same initial subset  is employed. 

It has been shown by Lim and Midi (2015) that ISE is much faster than the commonly used method, namely 

MVE or MCD. 



Classification Step III: From steps 1 and 2, observations that correspond to the union of L set and H set 

will be considered as deletion group/set, D and the remaining data are labeled as R set.

Classification Step IV: Fit the remaining R set using OLS method to estimate the regression coefficients        

, residuals       , hat values        , standard deviation       and standard deviation with the ith case deleted           

. The Fast Improvised Generalized Studentized Residuals (FIMGT) (a slight modification of Imon’s MGT 

(2005) is then defined as follows;



The observations are declared as vertical outliers if they have values of FIMGT greater than its cutoff point 

(          ). The            is defined as follows: 

where c is equals to 2 or 3.

Alguraibawi et al. (2015) then suggested a rule for classifying observations as follows,



It is clearly seen from the above table, that the vertical outliers and bad leverage points are detected based on our 

proposed FIGMT method.  Alguraibawi et al. (2015) have shown that the MGT is very successful in detecting 

the bad high leverage points and vertical outliers. According to Dhhan, Sohel, Midi (2016) and Rashid, Midi, 

Dhann (2021;IEEE Access), the effective of the weight function depends on the efficient diagnostic method of 

identifying outliers. Therefore, the initial estimate of our propose GM-FGMT  is given by,

where              was defined above.



Example: Aircraft data set

 The Aircraft dataset, which is taken from Gray (1985) is used to illustrate the merit of our proposed plot.

This dataset contains 23 cases with four predictor variables (Aspect ratio, Lift-to-drag ratio, Weight of the

plane, and Maximal thrust) and the response variable is the Cost.

Figure 1: The Studentized OLS res. vs. MD for the Aircraft data



Figure 2: The Standardized LMS                                                 Figure 3: The Mod. Generalized studentized

res. vs. RMD for the Aircraft data                                                 res. vs. DRGP for the Aircraft data



Real examples and Simulation Study

A real examples and Simulation Study are carried out in this section to assess the performance of our 

proposed method.

Simulation Study

Consider linear regression model;

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + ɛ𝑖

Where the error terms ɛ distributed as N(0,1). The X variables are generated from N(0,1). In order to 

create good and bad leverage points, certain clean observations are replaced with contaminated data.  To 

create bad leverage points, the first  100(α/2) % for both X and Y variables are replaced by contaminated 

observations generated from N(1,10). To create good leverage points, the last 100(α/2) % observations of 

X’s variables are replaced with contaminated observations distributed as N(1,10).



REMEDY HLCEO-SE and Ratio of the estimated Ridge, GM6, MM and

GM-FIMGT for clean generated data set

n Coef. VIF
Ridge GM6 MM GM-FIMGT

S.E Ratio S.E Ratio S.E Ratio S.E Ratio

20

1.14 0.7662 94.96 0.7472 97.38 0.7352 98.97 0.7355 98.93

1.11 0.6953 94.61 0.6784 96.96 0.6656 98.83 0.6655 98.84

1.12 0.6812 94.47 0.6649 96.78 0.6504 98.94 0.6522 98.67

40

1.05 0.4432 95.17 0.4363 96.68 0.4275 98.67 0.4279 98.57

1.06 0.4012 95.29 0.3916 97.63 0.3883 98.45 0.3877 98.61

1.05 0.4911 96.95 0.4905 97.06 0.4835 98.47 0.4851 98.14

100

1.03 0.3072 94.56 0.2985 97.32 0.2932 99.08 0.2921 99.45

1.02 0.2979 95.37 0.2936 96.76 0.2883 98.54 0.285 99.68

1.02 0.2494 94.23 0.2407 97.63 0.2367 99.28 0.2351 99.96

200

1.01 0.2165 95.94 0.2133 97.37 0.2088 99.47 0.208 99.86

1.01 0.2127 96.90 0.2087 98.75 0.2066 99.76 0.2069 99.61

1.01 0.2145 96.69 0.2138 97.01 0.2083 99.57 0.2078 99.81



REMEDY HLCEO SE and Ratio of the estimated OLS, Ridge, GM6, MM and GM-FIMGT for contamination 

generated data



Real examples 

Commercial Properties Dataset

This dataset is taken from Neter et al. (2004). This data set is non collinear and contained

81 observations with three explanatory variables, namely, age , operating expenses and

taxes. The dependent variable is the rental rates. Neter et al. (2004) noted that this data

set has 19 HLPs. However, this dataset is not HLCIO. In order to investigate the effect of

HLPs on non-collinearity pattern among the explanatory variables, we created severe

multicollinearity in this dataset by adding HLCIOs. The first observations for each of the

two explanatory variables was kept fixed with values 300.



Table 1: VIF values and Person correlation of coefficients (r) for original and modified 

Commercial properties dataset

Data set r
VIF

x1 x2 x3

Original Data

r1.2 = 0.387

r1.3 = 0.226

r2.3 = 0.366

1.187 1.302 1.1668

Modified data

r1.2 = 0.982

r1.3 = 0.025

r2.3 = 0.009

29.595 29.577 1.007



Table 2: Standard deviations of the estimates of Original (modified) Commercial dataset
P

a
ra

m
e
te

r

OLS Ridge GM6 GM-FIMGT

Est. SE Est. Boot. Est. Boot Est. Boot

෡𝜷𝟎 11.61(14.89) 0.67(0.28) 9.77(14.46) 0.73(0.31) 11.09(11.15) 0.48(0.42) 11.23(11.80) 0.42(0.15)

෡𝜷𝟏 -0.12 (-0.13) 0.03(0.03) -0.13(-0.14) 0.03 (.03) -0.11(-0.11) 0.02(0.01) -0.12(-0.13) 0.02(0.01)

෡𝜷𝟐 0.44(0.13) 0.07(0.03) 0.63(0.16) 0.07(.03) 0.04(0.47) 0.05(0.04) 0.46(0.41) 0.04(0.02)

෡𝜷𝟑 2.44(0.18) 1.21(1.29) 2.48(0.59) 1.19(1.36) 1.21(-0.32) 1.20 (1.29) 3.57(3.41) 0.69 (0.67)



Conclusion

 The main aim of this presentation is to show that HLPs can change the multicollinearity pattern of data 

(HLCIO): HLCEO and HLCRO.

 HLCIOM diagnostic measure can be used to detect HLCIO.

 The OLS method performs poorly for data having HLCEO.

 Ridge regression, latent root regression and Jackknife Ridge regression are  incorrect remedial measure for 

multicollinearity problem caused by HLCEO. 

 In this regard using either OLS, Ridge regression, latent root regression and Jackknife Ridge regression

will give inefficient estimates, inaccurate prediction, misleading conclusion, and hence lead to prediction

uncertainties.

 Suggest to use GM-FIMGT for data having HLCEO to avoid prediction uncertainties.

 For HLCEO-suggest using GM-FIMGT, HLCRO suggest using Jackknife Ridge FIMGT to avoid

incorrect interpretation, incorrect remedial measures and misleading conclusion.
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