Time Series Modeling of Start-
Stop Battery Electric Vehicle
Charging
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INTRODUCTION

« The Battery Electric Vehicles (BEVs) has reached maturity and
expected to replace the Internal Combustion Engine (ICE)
Vehicles.

* Relying solely on stored energy from electric charges in their
battery packs, BEVs propel their electric motors without the
need for traditional combustion engines.

* Meeting this growing demand requires electricity utility
providers to enhance electricity generation capabillities and
upgrade distribution grids for BEVs charging stations.
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INTRODUCTION

« Manufacturers of BEVs and charging stations typically record
charging sessions at start and stop points. This data can be
valuable for forecasting electricity demand, as it provides
Insights into usage patterns.

 BEV charging data often exhibits non-stationary and unstable
characteristics, posing significant challenges for forecasting
(Dokur et. al).

 The raw data need to be transformed into a continuous time
series format for effective modeling of charging behavior,
enabling trend and seasonality forecasting.
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METHODOLOGY

« Secondary data for this study was sourced from the My Electric
Avenue project in the UK where 209 Nissan Leaf BEVs were
leased to participants and its usage behavior is recorded.

* Using data from January 1, 2014 to December 15, 2014, the
transformation involves counting simultaneous charging by
augmenting data between start and stop times.

* The final transformed data will be suitable to be used in the
LSTM model for modeling and forecasting electric load demand
from BEV during active charging session.
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METHODOLOGY
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METHODOLOGY

 The hidden LSTM layer Is structured as a sequential single
layer, encompassing 125 units of LSTM cells. In the training
process, the data was divided into sequences of 60 data points,
each associated with a single expected output.

fe=04(Ws*x;+ Us* he_y + bf)

ir = 0g(W;*x + Uy * he—y + by)
0 = gg(wu *xg +Ug*heq + ba)
E'i: = Jc(wc *xp+Upg*he g + bc}

Ct=fr 1+

ht-1 ht = 0z Jc(ct)
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RESULTS
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CONCLUSIONS

 The transformed data from BEVSs has been found suitable for
time series modeling using the LSTM method.

* This indicates that the data retains the necessary patterns and
characteristics, making it effective for accurately predicting
future trends in BEVs charging behavior through advanced
modeling techniques like LSTM.

« The LSTM method proposed in this study achieved:
« CPU-A: MAPE of 1.38%, RMSE of 0.51 (after 20 epochs)
« CPU-L: MAPE of 1.19%, RMSE of 0.51 (after 20 epochs)
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