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Abstract:  

Solar radiation forecasting is vital for optimizing renewable energy systems and 
addressing environmental issues. Accurate forecasts enable better energy production 
planning and economic decision-making, ensuring cost savings and enhanced energy 
efficiency. This study aims to evaluate the performance of Seasonal Autoregressive 
Integrated Moving Average (SARIMA) model for forecasting solar radiation in Ipoh, Perak. 
Daily solar radiation in Ipoh, obtained from Meteorological Department of Perak, were 
analyzed. The methodology involved data preprocessing, which included handling 
missing values, addressing data skewness, and analyzing patterns, as well as SARIMA 
modeling, which included ensuring data stationarity, selecting possible models, and 
validating selected models’ performance. Python programming was used to select models 
based on model coefficient p-values and the Ljung-Box Q test p-values, and selected 
models’ comparison based on Akaike Information Criterion (AIC) and Bayesian 
Information Criterion (BIC). Performance evaluation was done using Mean Absolute Error 
(MAE), Mean Squared Error (MSE), Root Mean Square Error (RMSE), and Mean 
Absolute Percentage Error (MAPE). The optimal SARIMA model identified was SARIMA 
(6, 1, 0)(2, 2, 0)₅₂, with MAE of 2.81, MSE of 12.09, RMSE of 3.48, and MAPE of 15.74%. 
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1. Introduction:  

The forecasted electricity demand per capita is expected to continue increasing due to 
population growth. Electricity demand and generation in Malaysia indicates that both will 
significantly expand year by year (Azman, 2021). This surge in energy demand 
underscores the need for efficient and sustainable energy solutions but at the same time, 
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the environmental impact of energy production remains a significant concern. Traditional 
energy sources, especially those involving fuel combustion, contribute to air pollution and 
greenhouse gas emissions. Addressing these environmental issues requires a shift 
towards more cleaner energy sources, and solar energy is one of the great renewable 
energy sources.  

The empirical findings by Raihan, 2022 show that the coefficient of economic 

growth in Malaysia is positive and significant. However, Malaysia must plan well in order 
maintain a consistent economic growth and regain its historical high growth momentum. 
In this context, accurate solar radiation forecasting becomes crucial. Precise predictions 
can optimize the placement and efficiency of solar panels, thus reducing the overall costs 
of solar technology installation and operation. Since the solar radiation data often exhibits 
seasonal and trend components, SARIMA model allows for precise modelling of these 
variations (Al-Rousan, 2021). This study not only aims to evaluate the performance of 
SARIMA model for solar radiation forecasting in Ipoh but also provides valuable 
information for future researchers to supports economic and environmental goals by 
optimizing energy use and reducing pollution. 

2. Methodology:  

Daily solar radiation measurements that obtained from the Meteorological Department of 
Perak covering an extensive period spanning multiple decades. This long-term dataset is 
crucial for capturing seasonal and long-term trends in solar radiation, which are essential 
for accurate SARIMA modelling. To manage the computational complexity inherent in 
such an extensive dataset, the daily measurements were aggregated into weekly 
intervals. This aggregation simplifies the data without significantly losing important 
information, making the SARIMA modelling process more efficient. Incomplete weeks 
were excluded from the analysis to ensure consistency and reliability of the data. Each 
week was structured to contain seven data points, ensuring uniformity in the dataset. 

The methodology then proceeds with data preprocessing, which includes handling 

missing values, addressing data skewness, and analysing patterns, and SARIMA 
modelling, including model selection and validation. For addressing missing data, three 
distinct methods which are mean substitution (MS), random forest (RF), and k-nearest 
neighbors (KNN) was outlined. MS involves replacing missing data for a variable with the 
mean of the available non-missing data for that variable. RF method combines the 
predictions of multiple decision trees, using bagging (bootstrap aggregation) to aggregate 
predictions from various random predictors. The KNN method imputes missing values by 
identifying a set number of instances that are most similar to the instance of interest. The 
performance of these imputation method evaluated using RMSE, NSE, and MAE.  

The imputed data using the best imputation method then partitioned into training and 
testing sets to evaluate the performance of the predictive models. In this study, the test 
set consisted of 52 data points, representing one year (52 weeks). Data normalization 
before applying the SARIMA model was crucial because it helped stabilize the variance 
and improve the model's performance (Al-Rousan, 2021). SARIMA models assume that 
the time series data is stationary, meaning that its statistical properties do not change over 
time. Box-Cox Transformation, a statistical technique, was used to transform non-
normally distributed data into a form that more closely approximated a normal distribution. 

Seasonal and trend decomposition was then performed to analyse time series data by 
breaking it down into its fundamental components, which are trend, seasonal, and residual 
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components. This decomposition helps in better understand the underlying patterns in the 
data and can inform the modelling process, which are the value of seasonal period in 
SARIMA model. The trend component of a time series represents the long-term 
progression of the data, indicating the overall direction in which the data is moving over 
time, whether upward, downward, or stable. The seasonal component captures the 
repeating patterns or cycles that occur at regular intervals, reflecting consistent seasonal 
variations. Meanwhile, the residual component, also known as the noise component in 
the data that cannot be explained by the trend or seasonal components. 

Ensuring data stationarity is crucial for SARIMA modelling as it’s met the model 
assumptions (Haddad, 2019). To assess stationarity, the Autocorrelation Function (ACF) 
graph is used. A stationary series shows a rapid decline in spikes after a few lags, while 
a slow decay suggests non-stationarity due to trends or seasonality. Regular and 
seasonal differencing are applied to address these issues. The number of regular 
differencing (d) and seasonal differencing (D) applied are the values for d and D in 
SARIMA model. After these adjustments, the ACF is replotted to confirm stationarity. This 
approach also ensures that the SARIMA model effectively captures both non-seasonal 
and seasonal components of the data. 

Selecting parameters for SARIMA models involves analysing the ACF and PACF plots 
to determine both non-seasonal and seasonal components (Al, Rousan, 2021). For non-
seasonal parameters, the PACF plot is used to identify the number of autoregressive 
terms (p). This is indicated by the lag where the spikes cuts off or drops sharply. The ACF 
plot helps determine the moving average terms (q), with an abrupt cut-off after a certain 
lag suggesting the number of MA terms. For seasonal parameters, the ACF and PACF 
are analysed at lags that correspond to multiples of the seasonal cycle length (s). The 
ACF plot reveals seasonal moving average terms (Q) by showing an abrupt cut-off at 
these lags, while the PACF plot indicates seasonal autoregressive terms (P) by showing 
where seasonal partial autocorrelations cut off sharply.  

Model selection involves evaluating p-values of model coefficients and the Ljung-Box 
Q test. Coefficients with p-values below 0.05 are considered statistically significant, and 
the Ljung-Box Q test ensures residuals are white noise. Models meeting these criteria are 
compared using the AIC and BIC. The model with the lowest AIC and BIC values is 
preferred for its optimal fit and minimal complexity. For model validation, several metrics 
are used which are MAE, measures average error magnitude, MSE assesses squared 
differences, and RMSE provides error in data units. MAPE expresses accuracy as a 
percentage for easy comparison. Residuals' ACF and PACF are checked to ensure they 
are white noise, validating the model’s reliability and effectiveness. 

 

3. Result:  

The data preprocessing process began with examination of missing values. It was found 
that the dataset contained 973 missing values, accounting for 6.34% of the total data. 
After evaluating imputation methods using RMSE, NSE, and MAE, it was determined that 
RF performed most effectively in handling these missing values.  

Imputation Method Mean Substitution Random Forest KNN 

RMSE 2.847 2.592 2.881 

NSE 0.398 0.516 0.399 

MAE 2.286 2.021 2.214 

Table 3.1: Imputation method of weekly solar radiation data in Ipoh 



 

 

3 MyStats 2022 

          
(a)                                                                           (b) 

Figure 3.1: (a) Distribution before; (b) Distribution after Box-Cox transformation for 
weekly solar radiation training dataset 

 
Figures 3.1 illustrate the effects of addressing skewness in the weekly solar radiation data 
for the training dataset. It’s demonstrating the distribution of the original transformed 
weekly training solar radiation data, highlighting a slight right skew. By applying Box- Cox 
transformation, the skewness in the data is reduced. 
 

 
Figure 3.2: Seasonal and trend decomposition of weekly transformed solar radiation 

training data 
 

Figure 3.2 illustrates that the transformed weekly solar radiation data in the training set 
exhibit seasonal and trend components, with a repeating cycle every 52 weeks. This cycle 
corresponds to yearly seasons, indicating an annual pattern in solar radiation. Thus, the 
seasonal period chosen for the SARIMA model in subsequent analyses will be 52 weeks. 
 

     
(a)                                                                           (b) 

Figure 3.3: (a) ACF graph up to 52 lags; (b) ACF graph up to 765 lags of transformed 
weekly solar radiation training data 
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Based on Figure 3.3 and 3.4, the ACF plot reveals the correlation of the time series with 
its own lagged values. The presence of initial spikes followed by a gradual decay and 
repeated pattern every 52 lags, strongly indicates that the data is non-stationary.   

  
(a)                                                                           (b) 

Figure 3.4: (a) ACF; (b) PACF graph of weekly transformed solar radiation training data 
after first regular differencing up to 40 lags 

 

  
(a)                                                                           (b) 

Figure 3.5: (a) ACF; (b) PACF graph of weekly transformed solar radiation training data 
after first regular differencing up to 765 lags 

 
Based on figure 3.4, after the first regular differencing, the ACF graph shows a rapid 
decline, indicating reduced non-stationarity. The PACF graph show few spikes at lower 
lags. However, figure 3.5 shows that there are still few significant spikes every 52 lags for 
both ACF and PACF graph, suggesting some remaining patterns.  

     
(a)                                                                           (b) 

Figure 3.6: (a) ACF; (b) PACF graph of weekly transformed solar radiation training data 
after first regular differencing and second seasonal differencing up to 40 lags 
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(a)                                                                           (b) 

Figure 3.7: (a) ACF; (b) PACF graph of weekly transformed solar radiation training data 
after first regular differencing and second seasonal differencing up to 688 lags 

 
Based on Figure 3.7, after applying the second seasonal differencing, the ACF shows that 
the spikes cut off after 104 lags, equivalent to two cycles of 52 lags. The PACF in Figure 
3.7 shows that the spikes cut off after 156 lags, corresponding to three cycles of 52 lags. 
Therefore, the SARIMA model parameters suggested by the graphs in figures 3.6 and 3.7 
are SARIMA(10,1,1)(3,2,2)52. By using Python programming, among all the models 
considered, SARIMA(6,1,0)(2,2,0)52 was the only model that met both criteria which are 
all of the p-values of model coefficient is 0.00 (statistically significant) and p-values of 
Ljung-Box Q Test yielded a high p-value of 0.66, indicating no significant autocorrelation 
in the residuals. 

     
(a)                                                                           (b) 

Figure 3.8: (a) ACF; (b) PACF graph of SARIMA(6,1,0)(2,2,0)52 residual 
 

The ACF and PACF plot in figure 3.8 shows the autocorrelation of the 
SARIMA(6,1,0)(2,2,0)52 residuals at different lags. The majority of the residuals fall within 
the 95% confidence bounds (dashed lines). 
 

 
Figure 3.9: Comparison between testing data and forecasted data using SARIMA(6,1,0)(2,2,0)52 
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The ACF plot in figure 3.9 shows the autocorrelation of the residuals at different lags. The 
majority of the residuals fall within the 95% confidence bounds (dashed lines), indicating 
that there is no significant autocorrelation in the residuals. The evaluation performance 
obtained for SARIMA(6,1,0)(2,2,0)52 are MAE of 2.809, MSE of 12.09, RMSE of 3.477, 
and a MAPE of 15.74%. 
 

4. Discussion and Conclusion: 

A detailed analysis of weekly solar radiation data in Ipoh underscores the importance of 
accurate forecasting for optimizing solar energy systems. The dataset revealed that 
6.34% of the data was missing. To address this, three imputation methods were compared 
which are MS, KNN and RF. RF emerged as the superior method, with an RMSE of 2.592, 
NSE of 0.516, and MAE of 2.021, outperforming MS and KNN. To correct the slight right 
skew in the data, the Box-Cox transformation was applied, resulting in a more symmetrical 
distribution suitable for advanced modelling. Seasonal and trend decomposition revealed 
a significant annual cycle, repeating every 52 weeks, highlighting strong seasonal 
influences on solar radiation in Ipoh. This finding was crucial for configuring the SARIMA 
model to accurately capture these patterns. Analysing the ACF and PACF plots helped 
identify non-stationarity, which was mitigated through first and second seasonal 
differencing. The final (6,1,0)(2,2,0)52 model was selected for its statistical significance 
and absence of significant autocorrelation in the residuals, as confirmed by the Ljung-Box 

Q Test. The SARIMA model's performance, with an MAE of 2.809, MSE of 12.09, RMSE 

of 3.477, and MAPE of 15.74%, demonstrated its precision and reliability in forecasting 
solar radiation. Accurate forecasting is crucial for optimizing the placement and operation 
of solar panels, thereby minimizing installation and operational costs and making solar 

technology more economically viable. 
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