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Abstract:  
 
Fraudulent insurance claims pose a significant threat to the financial sustainability of 
insurance companies. While machine learning models have been employed to detect 
fraud, these methods are typically sophisticated and computationally expensive. This 
work examines the use of Benford’s law in the context of healthcare insurance claims. 
Benford’s law was adopted in this study due to its straightforward and easy-to-apply 
statistical technique. We utilized a synthetic dataset obtained from Kaggle and conducted 
three statistical tests, namely, the z-test, the chi-square test, and the mean absolute 
difference, on the dataset to measure the dataset’s conformity to Benford’s law. 
Specifically, we compared the observed and expected frequency of occurrence for each 
of the nine leading digits. The results were presented both graphically and in tabular form. 
The study found that the inpatient reimbursement amount, outpatient reimbursement 
amount, and outpatient gross claim conform to Benford’s law, whereas the inpatient gross 
claim does not. 
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1. Introduction:  
 
It is estimated that one fifth of the insurance claims submitted in the USA are fraudulent, 
resulting in an alarming annual loss of $308.6 billion due to insurance fraud (Kilroy, 2024). 
To cover the increased risk and losses due to fraud, actuaries adopt more conservative 
pricing strategies. This approach transfers the financial burden onto policyholders in the 
form of higher premiums (Chen et al., 2020). 
 
While it is impossible to eliminate fraud entirely, the reduction of fraudulent cases is 
achievable through effective detection methods. The increased implementation of 
automated fraud detection technologies, such as machine learning models (Nabrawi & 
Alanazi, 2023), has led to a significant decrease in fraudulent activities. 
 
Although machine learning models have achieved considerable detection accuracy, they 
are often overly sophisticated and computationally expensive due to the large amount of 
input data required. In this regard, Benford’s law serves as a viable alternative for fraud 
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detection. Benford’s law is a statistical tool that is straightforward and easy to apply. 
Additionally, it is relatively less computationally expensive compared to machine learning 
models. It has been found widespread successful implementations in various fields, 
including forensic accounting (Druică et al., 2018) and electoral fraud detection (Gueron 
& Pellegrini, 2022). 
 
Mathematically speaking, Benford’s law states that the probability of occurrence of the 
first, or the leading digit, d, of numerical values follows the following probability function: 
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For instance, the digit one will appear approximately 30.1% of the time, whereas the digit 
nine will appear only about 4.58% of the time. It is important to note that Benford's Law 
applies exclusively to naturally occurring numbers, such as insurance claim amounts, 
stock prices, and death rates. The law is not applicable to manipulated or pre-assigned 
numbers, such as phone numbers, identification numbers, and aggregate claim amounts 
after the policy limit is applied. 
 

2. Methodology:  
 
The synthetic dataset utilized in this study was obtained from the Kaggle website (Gupta, 
2019). It comprises 63,968 observations, detailing the annual reimbursement amounts for 
Medicare, a health insurance program implemented in the USA. Specifically, this research 
focused on data from four primary columns: IPAnnualReimbursementAmt, IPGrossClaim, 
OPAnnualReimbursementAmt, and OPGrossClaim, where IP, OP, and Amt stand for 
inpatient, outpatient, and amount, respectively. 
 
Both Microsoft Excel and the R programming language were used to perform the 
experiments. During the data preprocessing stage, the first digits of the respective 
inpatient and outpatient reimbursement amounts and gross claims were initially extracted. 
Subsequently, the total number of observations for each of the nine leading digits was 
tallied. 
 
The distribution of leading digits for each of the four categories was analyzed to see how 
well it conformed to Benford's Law. Combo charts were generated for visualization 
purposes, including error bars to identify any significant deviations between the observed 
and expected values. 
 
Three performance metrics were used to score the conformity of the dataset to Benford’s 
law; they are the z-test, the chi-squared test, and the mean absolute deviation (MAD). 
 
The z-test is a statistical hypothesis test that quantifies how many standard deviations the 
observed values are from the expected values. We used 0.05 =  and the corresponding 

critical value of /2 1.96.z =  The formula of the z-statistics is given as follows: 
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where the abbreviation AP, EP, and N stand for the actual proportion, the expected 
proportion, and the number of records, respectively. 
 
The chi-squared goodness-of-fit test compares the observed values to the expected 
values, assessing any significant deviations between the two. If the observed values are 
close to the expected values, the chi-squared test statistic will be small, indicating a good 
fit. Conversely, if the observed values deviate significantly from the expected values, the 
chi-squared test statistic will be large, leading to the rejection of the null hypothesis. The 
formula of the chi-squared test statistics is given as follows: 
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where iO  and iE  are the observed and expected frequencies of the thi  category, 

respectively, and the degree of freedom is given by the formula 1,df n= −  where n is the 

number of categories. 
 
The mean absolute deviation (MAD) is a measure of conformity to Benford’ law (Nigrini, 

2012). The absolute value function  is incorporated in the formula to prevent negative 

deviations from offsetting positive deviations. The formula for MAD is given as follows: 
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where the abbreviation AP and EP stand for the actual proportion and the expected 
proportion, respectively, and k is the number of leading digits. A greater value of MAD 
implies that the observed values differ significantly from the expected values. While no 
critical scores or values are proposed for the MAD test, a range of scores was suggested 
by Nigrini (2012) to categorize the results. These categories are as follows: close 
conformity (0.000 to 0.006), acceptable conformity (0.006 to 0.012), marginally acceptable 
conformity (0.012 to 0.015), and non-conformity (above 0.015). 
 

3. Result:  
 
Figure 1 shows the visualization of the distribution of the data from the four categories, 
plotted against the expected distribution predicted by Benford’s law. From the visual 
representation, it is observed that among the four categories, the inpatient reimbursement 
amount (InReimburse) category conforms closely to Benford’s Law for all digits except 
digit 2, where there is a noticeable deviation observed from the height of the bar and the 
error bar plotted. For the outpatient reimbursement amount (OutReimburse) and 
outpatient gross claim (OutGrossClaim) categories, all nine digits conform closely to 
Benford’s Law, with no significant deviations observed.  Lastly, for the inpatient gross 
claim (InGrossClaim) category, it is observed from Figure 1 that its distributions for the 
digits 1, 2, and 3 significantly differ from the distribution predicted by Benford’s law. 
 
Table 1 presents the performance metrics for the inpatient reimbursement amount and 
inpatient gross claim categories. The first column lists the leading digits, followed by the 
expected proportion predicted by Benford’s Law in the second column. 
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Figure 1. Comparison of all categories with Benford’s law distribution 
 

Table 1. Performance metrics of the inpatient categories 
 

Digit Benford’s 
law 

Inpatient 
Reimbursement 

z-stat 
Inpatient Gross 

Claim 
z-stat 

1 0.3010 0.3024 0.4212 0.3455 13.7297* 

2 0.1761 0.1280 17.7637* 0.1214 20.3182* 

3 0.1249 0.1232 0.7501 0.0803 19.0966* 

4 0.0969 0.1073 4.9091* 0.0980 0.5256 

5 0.0792 0.0948 8.1215* 0.0990 10.3752* 

6 0.0669 0.0771 5.7159* 0.0823 8.6848* 

7 0.0580 0.0577 0.1366 0.0686 6.4413* 

8 0.0512 0.0559 3.0317* 0.0517 0.3400 

9 0.0458 0.0536 5.2667* 0.0531 4.9286* 
2 p-value 1.494e-83 

2 p-value 6.662e-216 * 1.96Z   

MAD 0.0111 MAD 0.0221  

Interpretation Acceptable 
conformity 

Interpretation Non-conformity  

 
Table 2. Performance metrics of the outpatient categories 

 

Digit Benford’s 
law 

Outpatient 
Reimbursement 

z-stat 
Outpatient Gross 

Claim 
z-stat 

1 0.3010 0.3029 0.9958 0.3011 0.0496 

2 0.1761 0.1796 2.3193* 0.1870 7.1578* 

3 0.1249 0.1317 5.1056* 0.1322 5.5429* 

4 0.0969 0.0978 0.7309 0.0984 1.2497 

5 0.0792 0.0754 3.4714* 0.0749 3.9737* 

6 0.0669 0.0653 1.6151 0.0619 5.0904* 

7 0.0580 0.0542 4.0552* 0.0533 5.0172* 

8 0.0512 0.0487 2.7934* 0.0475 4.1746* 

9 0.0458 0.0444 1.6193 0.0437 2.4504* 
2 p-value 1.442e-11 

2 p-value 1.287e-29 * 1.96Z   

MAD 0.00288 MAD 0.00439  

Interpretation Close conformity Interpretation Close conformity  
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The third column shows the actual proportion from the observed values of the inpatient 
reimbursement amount category, with the corresponding z-stat values in the fourth 
column. The fifth and sixth columns are defined similarly for the inpatient gross claim 
category. Any z-stat value greater than 1.96 is indicated with an asterisk. Additionally, the 
p-value of the chi-squared statistics and the mean absolute deviation (MAD), along with 
its interpretation, are provided in the final three rows of the table. Table 2 reports the 
performance metrics for the outpatient reimbursement amount and outpatient gross claim 
categories. The table is interpreted in a similar manner as Table 1. 

 
4. Discussion and Conclusion: 
 
It is noteworthy to highlight the difference between the inpatient gross claim and inpatient 
reimbursement amount categories. While the inpatient gross claim represents the raw 
loss data submitted by policyholders, the inpatient reimbursement amount refers to the 
revised amount after the deductible has been applied to the gross claim. Intuitively 
speaking, the inpatient gross claim (raw data) would conform to Benford’s law, whereas 
the inpatient reimbursement amount (data that has been manipulated) would not. 
However, Figure 1 showed otherwise, which contradicts Benford’s law.  
 
The z-test is applied to each of the nine leading digits in the four categories. Among the 
four categories, the number of cases that deviate significantly from the predicted values 
of Benford’s Law ranges between 5 and 7. While this statistical test provides granular 
insight into each of the nine individual leading digits, it does not reveal the overall 
conformity. With regard to the p-values of the chi-squared test statistics, all four categories 
showed values less than 0.05. Due to the large sample size, the p-values obtained are 
very small, while the test statistics have large values. This phenomenon is known as the 
excess power problem encountered by the chi-squared test (Kossovsky, 2021). It has also 
been argued that the chi-squared test may not be appropriate for testing conformity to 
Benford’s Law if the sample size is too large (Kossovsky, 2021). Lastly, the interpretations 
of the four MAD values obtained indicated that the outpatient reimbursement amount and 
outpatient gross claim categories exhibited close conformity to Benford's Law. In contrast, 
the inpatient reimbursement amount category demonstrated acceptable conformity, 
whereas the inpatient gross claim category showed non-conformity. 
 
For large sample sizes, it is inappropriate to rely solely on the chi-squared test to 
determine a dataset's conformity to Benford's Law. Therefore, other statistical tests, such 
as the mean absolute deviation (MAD), should be used to complement the chi-squared 
test to provide additional insights. 
 
It is also interesting to compare the results obtained by the chi-squared test and the MAD 
test. For smaller sample sizes, even if the chi-squared test concludes that a given dataset 
conforms to Benford’s Law, it does not necessarily imply that the MAD test will produce 
the same conclusion. This is because the chi-squared test tolerates large deviations from 
the expected distribution when the sample size is small. Conversely, if the chi-squared 
test concludes that a given dataset does not conform to Benford’s Law, it is highly likely 
that the MAD test will arrive at the same conclusion, as both tests indicate a statistically 
significant deviation from the expected distribution. 
This study has revealed the contradictory conclusions drawn from the graphical 
representation, the z-score test, and the chi-squared test. Specifically, the chi-squared 
test suffers from the excess power problem, which tolerates small deviations as the 
number of observations increases. 
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The main limitation identified in this study is the lack of accessibility to real-world insurance 
datasets. Due to regulatory policies and the need to protect policyholders' privacy, 
insurance companies are prohibited from sharing their data with third parties. Since the 
study utilized a synthetic data set, the analysis could not accurately quantify the accuracy 
of Benford’s law. Furthermore, deviations from Benford’s Law do not necessarily imply 
that the datasets are fraudulent. It is important to note that Benford’s Law serves as a 
preliminary statistical tool to quickly assess the authenticity of a given dataset. However, 
more advanced tests and algorithms should be employed for further investigation. 
 
Simulated datasets that are realistic and representative of actual insurance datasets 
(Campo & Antonio, 2023) could be adopted in future studies. Additionally, complementing 
the results from Benford’s Law with more advanced machine learning models presents 
another valuable avenue for exploration. While this study has incorporated datasets with 
deductibles, it would be insightful to examine insurance datasets that include co-
payments. The correlation between the claim amounts submitted by healthcare providers 
and fraud detection should also be investigated. This could help identify and mitigate 
unnecessary treatments performed for higher profitability. Research in this area also 
aligns with the government's goal to reduce false claims, which would otherwise lead to 
increased premiums for policyholders. 
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