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Capabilities of Al

Generative: Create new text, videos, audio

Interaction: LLM’s are the future of interfaces

Knowledge: Terabytes of notes, manuals weaponized

Reasoning: Just getting started; GPT 5 will stun you
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https://illuminate.google.com/home?pli=1
https://chatgpt.com/?model=o1-preview

History of Al

= Big Data + Big Stats + Big Vectors



A Historical Confluence

Modern Generative Al

Machine Learning

Word Embeddings

Data Science
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Data Engineering




Where does the word “data: come from?

e Data: 1640s, "a fact given or granted," classical plural of datum.
* From Latin datum. Proto-Indo-European (Sanskrit: Data, Dana)

* 1897 as "numerical facts collected for future reference.”
* Transmission: 1946.

* Data-processing 1954;

 database 1962;

* data-entry is by 1970.

www.etymologyonline.com



History of “Statistics”

* Comes from ancient civilizations such as Babylon
e Counting was the beginning: hexagesimal, decimal

* The term comes from the word for “state” (like statecraft)

e Counts of goods, estimation of taxes
e Census taking, mortality (John Graunt1662)

* Probability Theory

e Pascal, Fermat, Bernoulli, de Moivre

* Pre-modern stats: 1850-1945

* Gauss, Nightingale, Pearson, Fisher, (Egon) Pearson, Bayes, von Neumann, Tukey

* Modern stats
* Pearson, Bayesian, Ulam, Bradley, Efrom



Modern statistics

Basic statistics (descriptive, exploratory)

Data pre-processing and cleaning

Unsupervised learning and clustering

Supervised learning:

Regression, linear and logistic
Decision trees

Random forests

Support vector machines
K-Nearest Neighbors

etc.



Enter Big Data

200
181

180

[
o)}
o

147

'_‘-
.
(o]

120

o
N
o

97

=
o
o

79
80 64.2

60

Data volume in zettabytes

40 726

20 5 6.5 9

https://www.red-gate.com/blog/database-development/whats-the-real-story-behind-the-explosive-growth-of-data



Data outcompetes processing
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https://medium.com/grovf/embracing-the-exponential-growth-of-data-towards-the-
breakthrough-of-memory-scaling-d29a94f2e45c



Data Engineering



https://www.zdnet.com/article/cloud-computing-will-virtually-replace-traditional-data-centers-
within-three-years/

New distributed data architectures

Data Warehouses
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https://www.infocepts.ai/blog/dont-decide-on-a-data-architecture-until-you-read-this/



New Distributed Computation: Hadoop
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[ Data Science |

Statistics }—A=~I Data Engineering

And that is
Data Science

C. F. Jeff Wu suggested rebranding statistics as data science.
“Statistics = Data Science?”
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Machine Learning

Start with the data
Labeled (supervised)

Unlabeled (unsupervised)



3 Waves of Al

Wave 1: Neural Networks
1940s -1990s

Neural Networks
Expert Systems

Wave 2: Deep Learning:
2011 - present

Deep Neural Networks
Pattern Recognition
Matching, Prediction

o =

Siri Google
Lens

—

Wave 3: Generative Al \
2017 - present

e Large Language Models
(“LLMs”)

* Text, Image, Video, Science

Generation

ChatGPT MS Copilot




Neural Networks are not Regression

1. Non-Linearity and Complexity : 2 Elephants Chairs

¢ Non-linear activation functions:
RelLU, sigmoid, or tanh

2. Representation Learning
* No need to handcraft features
3. Universal Approximation

* Hornik, K., Stinchcombe, M., & White, H. (1989).
Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5), 359-366.

4, Architecture Variability
* CNN, RNN’s, Transformers

5. Scalability through parallelization, big data https://towardsdatascience.com/simple-introduction-to-
* Cloud, Hadoop, GPU’s, TPU’s, transfer earning, convolutional-neural-networks-cdf8d3077bac



More Engineering How GPU’s parallelize Al
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https://www.linkedin.com/pulse/accelerating-ai-art-parallelization-model-training-kirubasagar-v-ase5c/



Large Language Models
are based on
Word Embeddings

Reducing words to numbers



* Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013a. Efficient estimation of word

d representations in vector space. Proceedings of International Conference on Learning Representations
Words as

* Tomas Mikolov, Wen tau Yih, and Geoffrey Zweig. 2013b. Linguistic regularities in continuous space word
representations. In Proceedings of the 2013 Conference of the North American Chapter of the Association

Ve Ct O rs for Computational Linguistics: Human Language Technologies (NAACL-HLT-2013). Association for

Computa- tional Linguistics.
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Analogical Reasoning

Liang, Wentao, Lu Wang, Jialuo She, and Yuqing

. Liu. "Detecting Resource Release Bugs with
https://towardsdatascience.com/word2vec-research-paper- Analogical Reasoning.” Scientific

exp|ained_205cb7eeCC30 Programming 2022, no. 1 (2022): 3518673.



https://medium.com/nlplanet/two-

WO rd S beCO m e n u m be rS minutes-nlp-11-word-embeddings-

models-you-should-know-a0581763b9a9

Word Embeddings
Models

Image by NLPlanet



Massive Multitask Language Understanding
MMLU tests models on 57 different subjects

Model Performance (MMLU)
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*Exact model size is unknown. | Data from InstructEval GitHub.

https://newsletter.victordibia.com/p/understanding-size-tradeoffs-with



Conclusion



Barriers Being Breached by Gen Al

Content Structured vs Unstructured 80% of data is unstructured

old Al SuperViSEd vs Unsupervised Passive information unleashed

Robots learn to perform chores by
watching YouTube

Brian Heater / 9:09 AM PDT - June 22, 2023



Impact on

jobs,
economy

Al's impact on jobs
Most jobs are exposed to Al in advanced economies, with
smaller shares in emerging markets and low-income countries.

Employment shares by Al exposure and complementarity
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Source: International Labour Organization (ILC) and IMF staff calculations
Note: Share of employment within each country group is calculated as the working-age-

population-weighted average. I M F



