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OUTLIERS IN REGRESSION

% In statistical Data Analysis-Only one type of outlier.

s But in Regression, several versions of outliers;

» residual outliers —observations with large residuals

» vertical outliers —observations outlying in y-coordinate

» high leverage points-observations outlying in x-coordinate
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INTRODUCTION

s The ordinary least squares(OLS) method is the most popular technique in
regression analysis due to its optimal properties and ease of computation.

* However, many do not realized that the OLS estimates are much affected by
outliers.

s Among the three type of outliers, the HLPs, outlying observations in the X
direction, have the most detrimental effect on the computed values of various
estimates.

¢ Relying on the OLS method may give inefficient estimates and inaccurate
predictions and causing uncertainties in predicting future outcomes.

s As An alternative, we may use robust statistical method that try to reduce the effect

of outliers.



J INTRODUCTION

i ¢ Many robust methods such as M, MM, LMS, LTS are available in the literature
(Huber and Ronchetti, 1981; Yohai, 1987; Leroy and Rousseeuw, 1987).

s Simpson et al. (1992) pointed out that even though some of them have high
efficiency and possess high breakdown point (BDP), they do not have bounded
influence properties in the sense that they are unable to reduce the effect of HLPs.

s Schweppes as described by Hill and Paul (1977) proposed a new robust method
call Generalized M estimator that can handle HLPs.

+ The GM6 which is based on Robust Mahalanobis Distant (RMD) which uses MVE
and MCD to obtain the initial estimates has several shortcomings: long
computational running times, swamping, downweigt both good and bad HLPs,

efficiency tends to decrease as the no of good leverage points increases.



INTRODUCTION

* As a solution, Habshah et al. (2021) proposed GM-FIMGT which is based on
Improvised Generalized MT (FIMGT).

¢ It has been shown that GM-FIMGT more efficient than GM6. However, it is based
on ISEwhich is unstable because its algorithm depend on the selected initial subset,

h.

s Midi et al. (2020) showed that the final estimator of location and scatter of ISE is
equivalent to MCD if same initial subset is used. Otherwise, results will be
different. Moreover, computational running times still quite long.

¢ Hence, a more efficient GM estimator is needed to remedy these problems.



Objectives

&

» To develop a new GM estimator (GM-RFIID) by integrating an initial weight

L)

function based on robust and fast method of the identification of influential

observations (10s).
% To compare the proposed method with some existing methods.

% To apply the proposed method to real data.



METHODOLOGY

% Belsley et al. (2004) noted that influential obs (los) are those obs which either
alone or together with several other observations have a detrimental effect on the
computed values of various estimates.

¢ Itis generally believe that los are outlying obs in X or Y —space.

*»» However according to Chatterjee and Hadi (1986), 10s are not always HLPs and
vice versa.

¢ When establishing an approach to determine 10s, both the dependent and

independent variables should be taken into consideration.  According to

Rahmatullah Imon (2002) and Rousseeuw and Leroy (1987), failing to do that may

result in inaccurate detection of 10s and will lead to misleading interpretation.



Methodology

% Three steps is proposed to analyse a dataset for multiple linear regression.

| 2 Stepl : Identify the existence of HLPs using DRGP-RFCH

s Step 2: ldentify the existence of los using Robust and Fast Improvised
Influential Distance (RFIID) aaand cut-off point RFIID. Based on RFIID,
classify observations into RO, GLO and I0s

2 Step 3. Obtain the initial weight function for the solution of normal

equation of the GM estimator.
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.ﬂﬁ mqm Step 1:Diagnostic Robust Generalized Potential based
on RFCH to Detect HLP

“*Midi et al. (Pertanika Journal of Sc & Tech, 2021), see alsoLim and Habshah
(Computational Statistics,2016) (see also Habshah, Norazan et al. (2009), J. of Applied
Stat., Mazlina & Habshah (2015), Pak. J of Statistics) formulated RMD- Reweighted

Fast Consistent and High Breakdown (RFCH) to detect multiple high leverages. It
consists of two steps.
Step 1) suspect high leverage points are determined by the robust

Mahalanobis Distance based on Index Set Equality:

RMD; = \/(X ~T. (X)) C.(X )" (X =T (X)) =12 ..,n
where T.(X) and C.(x) are robust locations and shape estimtes of the RFCH,

respectively. A set of ‘good’ cases ‘remaining’ in the analysis denoted by R and deleted



s Step 1i) Diagnostic Approach used to confirm the suspected groups

wiE:—D) fori €D
* (-D)
= w..
Pii B =) fori €R
1—w

i

2 Where w' P = X' (XEXR)7T'X;

ii

% An observation is considered as HLps if p*; is large:

p’; > Median (p*;) + ¢ MAD (p7)

% Where c can be taken as a constant value of 2 or 3.



Step 2: Identify I0s

The RFIID can be summarized as the following:

Influential Observati Influential Observati

on on
(10) (10)

3 Regular Observation Good Leverage Obs

& S ervation

& (RO) (GLO)

Influential Observati Influential Observati

on on
(10) (10)
RFGLV
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Since it is not easy to proof the distribution of RFID;", confident bound type of

cutoff point is again utilized as in Habshah et al. (2009) and Rashid et al. (2022)

CPRFID; = median (RFID;) + 3MAD(RFID})




Step 3: The Proposed GM estimator based
on RFIID

For the general linear regression model with the usual assumptions, the GM

estimator is defined as a solution of normal equations which is given by,

Zﬂ:'w (}’f ;::Eﬁ})x: —0

i=1
Wherey = p' is a derivative of redescending function (weight function) and

;i = 1,2, ...,nis the initial weight element of the diagonal matrix W, & is

the scale estimate, and £ is the vector of parameters estimates.



Coakley and Hettmansperger (1993) proposed GM6 estimator which employs
Robust Mahalanobis Distance (RMD) based on Minimum Volume Ellipsoid
(MVE) or Minimum Covariance Determinant (MCD) to identify high leverage
points and subsequently initial weight of this GM estimator is formulated

based on RMD which is given by:

.1:'
T; = min £095.2)
RMD?




The weakness of this initial weight function

1. it tends to swamp some low leverage points (Bagheri and Habshah, -
Transaction in Statistics,2015), some of good leverages (GLPs) will be
given low weights. Hence, the efficiency of the GM6 estimator tends to
decrease with the presence of good leverage points. GLPs have no effect
or have very little effect on parameter estimates and may contribute to the
precision of parameter estimation(Rousseeuw, and Van Zomeren, 1990).
On the other hand, BLPs have high impact on the regression estimates.
This is the reason why the GM6-estimate is less efficient.

2.GM6 estimator takes too much computing time. -



el

Hence, we will propose a relatively easy and fast method based
on the detection of los using RFIID. Then only minimize the

weights of 10s.

CP
d; = min[ 1,( REIID

),i=12,...,n

RFIID




Algorithm of the Proposed GM-RFIID Estimator

The proposed GM-RFIID estimator is similar to that of Dhhan Habshah Sohel (Journal of
Appl Stat. 2016). The only different is the calculation of the initial weight function. The
algorithm of our proposed GM estimator is summarized as follows:

Step [: Use the LTS method as an initial estimator to achieve a high breakdown of 30%
with a n~ Y2 rate of convergence, and calculate the residuals (7).

Step 2 Based on the residuals in Step 1, compute the estimated scale (o )of the residuals,
s = (1.4826)(the median of the largest (n—p)of the |r.]).

Step 3: Using the estimated residuals (r,)and the estimated scale (), find the standardized
residuals (e,). where, e, = 7, /s

Step 4: Compute the initial weight based on FMGT (4). where m; = min [1,%}

Step 3: Emplov the initial weight (step 4) and the standardized residuals (step 3) to
achieve a bounded influence function for bad leverage points, t;, = e, /w, .

Step 0: Use the weighted residuals (t,) in first iteration WLS to estimate the parameters of
the regression based onff = (XTW X)"*XTW Y, where the weight w, is small for
large residuals to get good efficiency (Tukev weight function is used in this
chapter).

Step 7: Calculate the new residuals (r;) from WLS and repeat steps (2-6) until the

- parameters COnverge. -



Real examples and Simulation Study

A real examples and Simulation Study are carried out in this section to
assess the performance of our proposed method.

Simulation Study

Consider linear regression model,

Vi = Bo + P1xi1 + Baxiz + Baxiz + €
Where the error terms € distributed as N(0,1). The X variables are generated
from N(0,1). The contamination is created by randomly replaced some good

observation in variable x1 (for GLPs and BLPs) and in y1 for vertical outliers,
with arbitrarily large number equal to 100 with different percentage levels.



V7

@E@ Table1 : Efficiency (%) and bias (parenthesis), 5% and 10% of vertical
outliers (VOs)
method

VOs n | OLScont. | GM6 | GM-FIMGT | GM-RFIID
e 6.1021 | 90.2981 96.8012 96.8810
(4.9731) | (0.0102) (0.0121) (0.0119)

100 | 40372 | 83.0018 92.3823 95.091
(8.9114) | (0.1404) (0.0110) (0.0791)

5% | 1e0 4.083 85.2013 94.218 94.910
(6.1021) | (0.1611) (0.0101) (0.0091)

200 | 3:1940 | 82.0132 94.781 05.9182
(5.8105) | (0.1184) (0.0201) (0.0091)

300 | 42910 | 80.1820 05.6812 96.0172
(7.3091) | (0.1302) (0.0391) (0.0192)

a0 5.3810 | 84.2017 92.010 92.9123
(9.2876) | (0.2339) (0.0192) (0.0282)

100 | 30915 | 81.8120 91,381 92.912
(10.971) | (0.2091) (0.0401) (0.094)

10% | 1gq | 3-1910 | 86.2819 93.912 94.010
(5.321) | (0.1001) (0.0192) (0.011)

200 | 32971 79.231 03.2918 94.991
(5.0190) | (0.2320) (0.0981) (0.0401)

300 | 291081 | 80.1201 94.9180 95.1810
(8.0110) | (0.8891) (0.1029) (0.0912)
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Table 2: Efficiency (%) and bias (parenthesis), 5% and 10% of Good Leverage

points (GLPs) and Vertical Outliers (VOs)

GLP method
v%s " 'OLscont. | GM6 | GM-FIMGT | GM-RFIID
50 | 15.342 | 90.032 98.710 98.821)
(3.837) | (0.1501) (0.016) (0.0152)
100 | 6.1021 | 89.001 99.1540 99.2620
(3.1231) | (0.1010) (0.093) (0.0987)
506 | 150 | 9.4132 | 90.891 97.9243 98.320
(3.0412) | (0.1172) |  (0.0791) (0.0921)
500 | 10.366 | 92.001 98.0112 99.001
(2.2130) | (0.141) (0.0521) (0.012)
300 | 9.320 94.891 99.3901 100.102
(3.1721) | (0.1891) |  (0.0435) (0.001)
50 | 16.2712 | 92.0124 99.0012 99.201
(3.326) (0.0812) (0.0110) (0.0081)
100 | 14.238 | 91.321 98.0129 98.981
(4.910) | (0.0932) |  (0.0523) (0.010)
10% | 150 | 10.1293 | 90.991 97.345 98.791
(3.324) | (0.0890) | (0.0107) (0.005)
500 | 11.291 | 92532 98.981 99.012
(2.923) | (0.0931) | (0.0867) (0.0087)
300 | 12.642 | 90.2171 99.001 99.811
(3.781) (0.1039) (0.099) (0.010)
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@“@ MEN Taple 3: Efficiency (%) and bias (parenthesis), 5% and 10% of Bad Leverage Points.

method
N
BLPs OLScont. | GM6 | GM-FIMGT | GM-RFIID
50 | 25.0271 | 95.6201 92.3980 92.427
(1.1401) | (0.0020) (0.0219) (0.0212)
100 | 14.9302 | 92.9301 90.5231 91.213
(1.0297) | (0.0280) (0.0928) (0.0107)
506 | 150 | 12.9801 | 93.612 94.3932 95.002
(1.0198) | (0.0112) (0.0181) (0.0041)
200 | 13.1981 | 95.0012 95.128 95.976
(1.2101) | (0.0019) (0.0012) (0.0023)
300 | 11.9301 | 95.3983 95.6310 96.104
(1.1230) | (0.0109) (0.0018) (0.0013)
50 | 28.3012 | 93.256 93.029 93.058
(1.0691) | (0.0138) (0.0291) (0.0293)
100 | 15.0289 | 92.086 91.128 91.205
(1.0297) | (0.0192) (0.0207) (0.0201)
109% | 150 | 12.0380 | 90.0921 92.417 92.326
(1.9012) | (0.0231) (0.0126) (0.014)
200 | 13.1902 | 91.3803 92 530 93.026
(1.1941) | (0.0239) (0.0117) (0.0091)
300 | 11.987 92.498 93.960 94.102
(1.1190) | (0.0281) (0.0163) (0.011)
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t’j [(TI[E[Y] Table 4: Efficiency (%) and Bias (parenthesis), 5% and 10% of Good and Bad  Leverag

GLPs method
& n OLScont. GM6 GM-FIMGT | GM-RFIID
BLPs
50 | 20.361 93.104 98.3601 98.823
(2.023) (0.030) (0.0180) (0.0128)
100 | 18.341 91.436 99.028 100.081
(1.634) (0.0741) | (0.0127) (0.0039)
5% 150 | 16.3061 94.361 99.305 99.518
(1.136) (0.0126) | (0.0019) (0.0017)
200 | 13.310 94.621 100.012 100.280
(1.037) (0.011) (0.0028) (0.0012)
300 | 12.936 93.497 100.031 100.105
(1.318) (0.024) (0.0014) (0.0010)
50 | 21.274 94.783 97.457 98.036
(2.0346) | (0.016) (0.0112) (0.0103)
100 | 19.297 93.267 99.0362 100.046
(1.513) (1.063) (0.0135) (0.0083)
150 | 16.215 91.403 100.036 100.188
(1.153) (0.0045) | (0.0051) (0.0021)
10%o 200 | 12.938 93.304 101.231 103.031
(1.0491) | (0.054) (0.0030) (0.0013)
300 | 13.873 92.361 102.345 104.136
(1.318) (1.073) (0.00971) (0.0053")




Real examples

Gunst and Mason Data

The Gunst and Mason data set is our first example taken from Gunst and
Mason (1980). This data set contains 49 observations, i.e. name of countries
(Selected Demographic Characteristics of Countries of the World) and six
independent variables (INFD, PHYS, DENS, AGDS, LIT, HIED) with
response variable (GNP). The classification plot for the detection of los, SE
of the estimated parameters and MAD are presented in table.
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E\a mﬁm@’l’ableS The results based on different regression methods for for Gunst and
Mason data Set.

Methods
Variables oLS GM6 GM-FIMGT | GM-RFIID

Parameter Parameter Parameter Parameter

(Boot.SE) (Boot.SE) (Boot.SE) (Boot.SE)

(INFD) -0.2323 -0.4765 -0.1946 -0.1635
(0.2541) (0.2460) (0.1679) (0.1107)

(PHYYS) -0.0063 0.0158 -0.0196 -0.0199
(0.2127) (0.2070) (0.0990) (0.0871)

(DENS) -0.1640 -0.2959 -0.1209 -0.0542
(0.6173) (0.5303) (0.4918) (0.3843)

(AGNS) 0.1483 1.0451 0.0725 0.0136
(0.5035) (0.9125) (0.4153) (0.4012)

(1T 0.2473 0.0658 0.2269 0.1950
(0.2380) (0.1826) (0.1095) (0.1302)

(HIED) 0.4565 0.4191 0.2634 0.2905
(0.2346) (0.2213) (0.1058) (0.0975)

Intercept 0.0032 0.0327 -0.1724 -0.2205
(GNP) (0.2932) (0.2263) (0.1775) (0.1745)

MMAD 0.5498 0.4731 0.4574 0.3943




Conclusion

“ The main aim of this presentation is to show that the OLS gives the poor
results when |Os are present in the data.

% The GM6 is not that efficient when GLPs are present in the data.

% The proposed GM-RFIID outperformed the other methods in the presence of
|Os and good leverage points.
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