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OUTLIERS IN REGRESSION

 In statistical Data Analysis-Only one type of outlier.

 But in Regression, several versions of outliers;

 residual outliers –observations with large residuals

 vertical outliers –observations outlying in y-coordinate

 high leverage points-observations outlying in x-coordinate
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INTRODUCTION

 The ordinary least squares(OLS) method is the most popular technique in

regression analysis due to its optimal properties and ease of computation.

 However, many do not realized that the OLS estimates are much affected by

outliers.

 Among the three type of outliers, the HLPs, outlying observations in the X

direction, have the most detrimental effect on the computed values of various

estimates.

 Relying on the OLS method may give inefficient estimates and inaccurate

predictions and causing uncertainties in predicting future outcomes.

 As An alternative, we may use robust statistical method that try to reduce the effect

of outliers.
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INTRODUCTION

 Many robust methods such as M, MM, LMS, LTS are available in the literature

(Huber and Ronchetti, 1981; Yohai, 1987; Leroy and Rousseeuw, 1987).

 Simpson et al. (1992) pointed out that even though some of them have high

efficiency and possess high breakdown point (BDP), they do not have bounded

influence properties in the sense that they are unable to reduce the effect of HLPs.

 Schweppes as described by Hill and Paul (1977) proposed a new robust method

call Generalized M estimator that can handle HLPs.

 The GM6 which is based on Robust Mahalanobis Distant (RMD) which uses MVE

and MCD to obtain the initial estimates has several shortcomings: long

computational running times, swamping, downweigt both good and bad HLPs,

efficiency tends to decrease as the no of good leverage points increases.
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INTRODUCTION

 As a solution, Habshah et al. (2021) proposed GM-FIMGT which is based on

Improvised Generalized MT (FIMGT).

 It has been shown that GM-FIMGT more efficient than GM6. However, it is based

on ISEwhich is unstable because its algorithm depend on the selected initial subset,

h.

 Midi et al. (2020) showed that the final estimator of location and scatter of ISE is

equivalent to MCD if same initial subset is used. Otherwise, results will be

different. Moreover, computational running times still quite long.

 Hence, a more efficient GM estimator is needed to remedy these problems.
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 To develop a new GM estimator (GM-RFIID) by integrating an initial weight

function based on robust and fast method of the identification of influential

observations (IOs).

 To compare the proposed method with some existing methods.

 To apply the proposed method to real data.

.

Objectives
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METHODOLOGY

 Belsley et al. (2004) noted that influential obs (Ios) are those obs which either

alone or together with several other observations have a detrimental effect on the

computed values of various estimates.

 It is generally believe that Ios are outlying obs in X or Y –space.

 However according to Chatterjee and Hadi (1986), IOs are not always HLPs and

vice versa.

 When establishing an approach to determine IOs, both the dependent and

independent variables should be taken into consideration. According to

Rahmatullah Imon (2002) and Rousseeuw and Leroy (1987), failing to do that may

result in inaccurate detection of IOs and will lead to misleading interpretation.
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 Three steps is proposed to analyse a dataset for multiple linear regression.

 Step1 : Identify the existence of HLPs using DRGP-RFCH

 Step 2: Identify the existence of Ios using Robust and Fast Improvised

Influential Distance (RFIID) aaand cut-off point RFIID. Based on RFIID,

classify observations into RO, GLO and IOs

 Step 3: Obtain the initial weight function for the solution of normal

equation of the GM estimator.

Methodology
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Midi et al. (Pertanika Journal of Sc & Tech, 2021), see alsoLim and Habshah

(Computational Statistics,2016) (see also Habshah, Norazan et al. (2009), J. of Applied

Stat., Mazlina & Habshah (2015), Pak. J of Statistics) formulated RMD- Reweighted

Fast Consistent and High Breakdown (RFCH) to detect multiple high leverages. It

consists of two steps.

Step i) suspect high leverage points are determined by the robust

Mahalanobis Distance based on Index Set Equality:

where and are robust locations and shape estimtes of the RFCH,

respectively. A set of ‘good’ cases ‘remaining’ in the analysis denoted by R and deleted

by D

Step 1:Diagnostic Robust Generalized Potential based 

on RFCH to Detect HLP

       XTXXCXTXRMD RR

T

Ri 
1 i = 1, 2, …, n

 XTR  XCR
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 Step ii) Diagnostic Approach used to confirm the suspected groups

 Where

 An observation is considered as HLps if p*
ii is large :

p*
ii > Median (p*

ii) + c MAD (p*
ii)

 Where c can be taken as a constant value of 2 or 3.
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Step 2: Identify IOs

The RFIID can be summarized as the following:

R
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(IO)
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(IO)

Regular Observation

s

(RO)

Good Leverage Obs

ervation
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on
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RFGLV



Since it is not easy to proof the distribution of 𝑅𝐹𝐼𝐷𝑖
∗, confident bound type of

cutoff point is again utilized as in Habshah et al. (2009) and Rashid et al. (2022)

𝐶𝑃𝑅𝐹𝐼𝐷𝑖
∗ = median (𝑅𝐹𝐼𝐷𝑖

∗) + 3MAD(𝑅𝐹𝐼𝐷𝑖
∗)



Step 3: The Proposed GM estimator based 

on RFIID

For the general linear regression model with the usual assumptions, the GM

estimator is defined as a solution of normal equations which  is given by,

Where            is a derivative of redescending function (weight function) and          

.                          is the initial weight element of the diagonal matrix W,      is 

the scale estimate, and      is the vector of parameters estimates. 

̂



Coakley and Hettmansperger (1993) proposed GM6 estimator which employs 

Robust Mahalanobis Distance (RMD) based on Minimum Volume Ellipsoid 

(MVE) or Minimum Covariance Determinant (MCD)  to identify high leverage 

points and subsequently  initial   weight of this GM estimator is formulated 

based on RMD which is given by:



The weakness of this initial weight function

-1. it tends to swamp some low leverage points (Bagheri and Habshah, 

Transaction in Statistics,2015), some of good leverages (GLPs) will be 

given low weights.  Hence, the efficiency of the GM6 estimator tends to 

decrease with the presence of good leverage points. GLPs have no effect 

or have very little effect on parameter estimates and may contribute to the 

precision of parameter estimation(Rousseeuw, and Van Zomeren, 1990).  

On the other hand, BLPs have high impact on the regression estimates. 

This is the reason why the GM6-estimate is less efficient.

-2.GM6 estimator takes too much computing time.



Hence, we will propose a relatively easy and fast  method based 

on the detection of Ios using RFIID.  Then only minimize the 

weights of IOs.  

𝑑𝑖 = 𝑚𝑖𝑛 1, (
𝐶𝑃𝑅𝐹𝐼𝐼𝐷

𝑅𝐹𝐼𝐼𝐷
)], 𝑖 = 1,2, . . . , 𝑛



Algorithm of the Proposed  GM-RFIID Estimator

The  proposed GM-RFIID estimator is similar to that of Dhhan Habshah Sohel (Journal of 

Appl Stat. 2016).  The only different is the calculation of the initial weight function. The 

algorithm of our proposed GM estimator is summarized as follows:



A real examples and Simulation Study are carried out in this section to 

assess the performance of our proposed method.

Simulation Study

Consider linear regression model;

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + 𝛽3𝑥𝑖3 + ɛ𝑖

Where the error terms ɛ distributed as N(0,1). The X variables are generated 

from N(0,1). The contamination is created by randomly replaced some good 

observation in variable x1  (for GLPs and BLPs) and in y1 for vertical outliers, 

with arbitrarily large number equal to 100 with different percentage levels. 

Real examples and Simulation Study



Table1 : Efficiency (%) and bias (parenthesis), 5% and 10% of vertical            

outliers (VOs)    

 

VOs 

 

n 

method 

OLScont. GM6 GM-FIMGT GM-RFIID 

5% 

50 
6.1021 

(4.9731) 

90.2981 

(0.0102) 

96.8012 

(0.0121) 

96.8810 

(0.0119) 

100 
4.0372 

(8.9114) 

83.0918 

(0.1404) 

92.3823 

(0.0110) 

95.091 

(0.0791) 

150 
4.083 

(6.1021) 

85.2013 

(0.1611) 

94.218 

(0.0101) 

94.910 

(0.0091) 

200 
3.1940 

 (5.8105) 

82.0132 

(0.1184) 

94.781 

(0.0201) 

95.9182 

(0.0091) 

300 
4.2910 

 (7.3091) 

80.1820 

(0.1302) 

95.6812 

(0.0391) 

96.0172 

(0.0192) 

   10% 

50 
5.3810 

(9.2876) 

84.2017 

(0.2339) 

92.010 

(0.0192) 

92.9123 

(0.0282) 

100 
3.0915 

(10.971) 

81.8120 

(0.2091) 

91,381 

(0.0401) 

92.912 

(0.094) 

150 
3.1910 

(5.321) 

86.2819 

(0.1001) 

93.912 

(0.0192) 

94.010 

(0.011) 

200 
3.2971 

(5.0190) 

79.231 

(0.2320) 

93.2918 

(0.0981) 

94.991 

(0.0401) 

300 
2.91081 

(8.0110) 

80.1201 

(0.8891) 

94.9180 

(0.1029) 

95.1810 

(0.0912) 

 



Table 2: Efficiency (%) and bias (parenthesis), 5% and 10% of Good Leverage    

points   (GLPs) and Vertical Outliers (VOs)

GLP 

& 

VOs 

 n 
method 

OLScont. GM6 GM-FIMGT GM-RFIID 

5% 

50 15.342 

(3.837) 

90.032 

(0.1501) 

98.710 

(0.016) 

98.821) 

(0.0152) 

100 6.1021 

(3.1231) 

89.001 

(0.1010) 

99.1540 

(0.093) 

99.2620 

(0.0987) 

150 9.4132 

(3.0412) 

90.891 

(0.1172) 

97.9243 

(0.0791) 

98.320 

(0.0921) 

200 10.366 

(2.2130) 

92.001 

(0.141) 

98.0112 

(0.0521) 

99.001 

(0.012) 

300 9.320 

(3.1721) 

94.891 

(0.1891) 

99.3901 

(0.0435) 

100.102 

(0.001) 

10% 

50 16.2712 

(3.326) 

92.0124 

(0.0812) 

99.0012 

(0.0110) 

99.201 

(0.0081) 

100 14.238 

(4.910) 

91.321 

(0.0932) 

98.0129 

(0.0523) 

98.981 

(0.010) 

150 10.1293 

(3.324) 

90.991 

(0.0890) 

97.345 

(0.0107) 

98.791 

(0.005) 

200 11.291 

(2.923) 

92.532 

(0.0931) 

98.981 

(0.0867) 

99.012 

(0.0087) 

300 12.642 

(3.781) 

90.2171 

(0.1039) 

99.001 

(0.099) 

99.811 

(0.010) 

 



Table 3: Efficiency (%) and bias (parenthesis), 5% and 10% of Bad Leverage Points.

BLPs n 
method 

OLScont. GM6 GM-FIMGT GM-RFIID 

5% 

50 25.0271 

(1.1401) 

95.6201 

(0.0020) 

92.3980 

(0.0219) 

92.427 

(0.0212) 

100 14.9302 

(1.0297) 

92.9301 

(0.0280) 

90.5231 

(0.0928) 

91.213 

(0.0107) 

150 12.9801 

(1.0198) 

93.612 

(0.0112) 

94.3932 

(0.0181) 

95.002 

(0.0041) 

200 13.1981 

(1.2101) 

95.0012 

(0.0019) 

95.128 

(0.0012) 

95.976 

(0.0023) 

300 11.9301 

(1.1230) 

95.3983 

(0.0109) 

95.6310 

(0.0018) 

96.104 

(0.0013) 

10% 

50 28.3012 

(1.0691) 

93.256 

(0.0138) 

93.029 

(0.0291) 

93.058 

(0.0293) 

100 15.0289 

(1.0297) 

92.086 

(0.0192) 

91.128 

(0.0207) 

91.205 

(0.0201) 

150 12.0380 

(1.9012) 

90.0921 

(0.0231) 

92.417 

(0.0126) 

92.326 

(0.014) 

200 13.1902 

(1.1941) 

91.3803 

(0.0239) 

92.530 

(0.0117) 

93.026 

(0.0091) 

300 11.987 

(1.1190) 

92.498 

(0.0281) 

93.960 

(0.0163) 

94.102 

(0.011) 

 



Table 4: Efficiency (%) and Bias (parenthesis), 5% and 10% of Good and Bad     Leverage 

point                

GLPs 

& 

BLPs 

 

n 

method 

OLScont. GM6 GM-FIMGT GM-RFIID 

5% 

50 20.361 

(2.023) 

93.104 

(0.030) 

98.3601 

(0.0180) 

98.823 

(0.0128) 

100 18.341 

(1.634) 

91.436 

(0.0741) 

99.028 

(0.0127) 

100.081 

(0.0039) 

150 16.3061 

(1.136) 

94.361 

(0.0126) 

99.305 

(0.0019) 

99.518 

(0.0017) 

200 13.310 

(1.037) 

94.621 

(0.011) 

100.012 

(0.0028) 

100.280 

(0.0012) 

300 12.936 

(1.318) 

93.497 

(0.024) 

100.031 

(0.0014) 

100.105 

(0.0010) 

 

 

10% 

50 21.274 

(2.0346) 

94.783 

(0.016) 

97.457 

(0.0112) 

98.036 

(0.0103) 

100 19.297 

(1.513) 

93.267 

(1.063) 

99.0362 

(0.0135) 

100.046 

(0.0083) 

150 16.215 

(1.153) 

91.403 

(0.0045) 

100.036 

(0.0051) 

100.188 

(0.0021) 

200 12.938 

(1.0491) 

93.304 

(0.054) 

101.231 

(0.0030) 

103.031 

(0.0013) 

300 13.873 

(1.318) 

92.361 

(1.073) 

102.345 

(0.00971) 

104.136 

(0.0053`) 

 



Gunst and Mason Data

The Gunst and Mason data set is our first example taken from Gunst and 

Mason (1980). This data set contains 49 observations, i.e. name of countries 

(Selected Demographic Characteristics of Countries of the World) and six 

independent variables (INFD, PHYS, DENS, AGDS, LIT, HIED) with 

response variable (GNP). The classification plot for the detection of Ios, SE  

of the estimated parameters and MAD are presented in table. 

Real examples 



PLOT OF THE REAL DATA

T 



Table5: The results based on different regression methods for for Gunst and 

Mason data Set.

Variables 

Methods 

OLS GM6 GM-FIMGT GM-RFIID 

Parameter 

(Boot.SE) 

Parameter 

(Boot.SE) 

Parameter 

(Boot.SE) 

Parameter 

(Boot.SE) 

(INFD) -0.2323 

(0.2541) 

-0.4765 

(0.2460) 

-0.1946 

(0.1679) 

-0.1635 

(0.1107) 

(PHYS) -0.0063 

(0.2127) 

0.0158 

(0.2070) 

-0.0196 

(0.0990) 

-0.0199 

(0.0871) 

(DENS) -0.1640 

(0.6173) 

-0.2959 

(0.5303) 

-0.1209 

(0.4918) 

-0.0542 

(0.3843) 

(AGNS) 0.1483 

(0.5035) 

1.0451 

(0.9125) 

0.0725 

(0.4153) 

0.0136 

(0.4012) 

(LIT) 0.2473 

(0.2380) 

0.0658 

(0.1826) 

0.2269 

(0.1095) 

0.1950 

(0.1302) 

 (HIED) 0.4565 

(0.2346) 

0.4191 

(0.2213) 

0.2634 

(0.1058(  

0.2905 

(0.0975) 

Intercept 

(GNP) 

0.0032 

(0.2932) 

0.0327 

(0.2263) 

-0.1724 

(0.1775) 

-0.2205 

(0.1745) 

MMAD 0.5498 0. 4731 
 

0.4574 
 

0.3943 
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 The main aim of this presentation is to show that the OLS gives the poor 

results when IOs are present in the data.

 The GM6  is not that efficient when GLPs are present in the data.

 The proposed GM-RFIID outperformed the other methods in the presence of  

IOs and good Ieverage points.

Conclusion
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