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Abstract: Many do not realize that outliers in the X directions or high leverage points 
(HLPs), have the most detrimental effect on the computed values of various estimates 
which leads to misleading conclusion about the fitted regression model. Several robust 
methods have been proposed to remedy this problems that include the generalized –
M (GM6) estimator. The GM6 uses a weighting function obtained from robust 
mahalanobis distance (RMD)- minimum volume ellipsoid (MVE)- based method in 
order to reduce the effect of HLPs. The shortcoming of this method is that it gives lower 
weight to HLPs irrespective of whether or not they are good (GLPs) or bad leverage 
points (BLPs). As such its efficiency tends to decrease as the number of GLPs 
increases in a data set.  Moreover, the GM6 suffers from long computational running 
times.  As a remedy to this problem, Generalized-M estimator based on fast improved 
MT (GM-FIMGT) which is an improvement of the GM6 is established. However, the 
GM-FIMGT is still not very efficient with regard to its parameter estimations and 
computational issues. This paper proposes a new robust GM estimator that 
incorporates a new weight function constructed from a new robust version of influential 
distance method (RFIID) which is based on Reweighted Fast Consistent and High 
Breakdown (RFCH) estimator. The numerical results clearly indicate that the GM-RFIID 
is more efficient and has less computational running times compared to some existing 
methods in this study. 
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1.0 Introduction 

 

The ordinary least squares (OLS) is the most widely used method in multiple linear 
regression due to its optimal properties and ease of computation. However, outliers have 
an adverse effect on the OLS estimates. In regression, outliers can be categorized as 
residual outliers, high leverage points and vertical outliers. Any observation that has 
large residual is referred to as residual outlier.  Vertical outliers are those observations 
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that are extreme or outlying in y-coordinate. High leverage points (HLPs) not only fall far 
from the majority of predictor variables, but also are deviated from a regression line 
because they actually tilt the OLS line and their effect on OLS estimator is very large 
(Leroy & Rousseeuw 1987).  According to Habshah et al. (2009), the detection of HLPs 
is very crucial due to its responsibility for misleading conclusion about the fitting of 
regression model, causing multicollinearity, masking/swamping of outlier etc. Therefore, 
the effect of HLPs should be minimized to get more efficient estimates. Nonetheless not 
all high leverage points have an adverse effect on the OLS estimates. Only bad leverage 
points, however have larger impact on the OLS estimates. Good leverage points follow 
the pattern of the majority of a data and hence contribute to the efficiency of an estimate 
(Chatterjee et al 2006). 

Robust statistical methods that are less sensitive to outliers have been developed 
to rectify the problems of outliers. There are plenty of robust estimation methods, namely  
the M, MM, LMS,LTS, etc can be found in the literatures (Huber & Ronchetti 1981; Yohai 
1987; Leroy & Rousseeuw 1987; Wilcox 2005). Simpson et al. (1992) pointed out that 
even though some of them have high efficiency and possess high breakdown point 
(BDP), they do not have bounded influence properties in the sense that they are unable 
to reduce the effect of HLPs. It is worth mentioning that one of the goals of robust 
regression is to achieve a high breakdown point nearly 50%, bounded influence and 
high efficiency (Yohai & Ruben 1988).  The M estimator has low breakdown point which 
is equals to (1/n) in which it can only handle outliers in the Y direction but not successful 
in handling outliers in the X direction.  Both the S and MM estimators do not have 
bounded influence property but they have high breakdown and high efficiency 
(Hekimoğlu & Erenoglu 2013).  The LTS and LMS also have high breakdown point, but 
they do not have bounded influence property and have very low relative efficiency which 
is close to 8% and 37%, respectively (Rousseeuw 1984; Rousseeuw 1993; Stromberg 
et al 1992). Since none of these estimators can handle high leverage point, Schweppes 
as described by (Hill & Paul 1977) suggested a new robust method called bounded 
influence Generalized M-estimator (GM-estimator) as a remedial technique for the 
sensitivity of M-estimator against high leverage points (see (Hill & Paul 1977; Andersen 
2008)). Many types of GM-estimators were proposed in literature, such as in (Wilcox 
2005; Andersen 2008) to produce good results in the presence of outliers and high 
leverage points. However, these methods have achieved a moderate BDP equals to 1/k, 
where k is the number of regression coefficients including the intercept (Simpson et al 
1992).  As a solution to these problems, multi-stage GM-estimators were developed. 
 The GM6 estimator proposed by (Coakley & Hettmansperger 1993; Wilcox 2005) 
is the most popular types of multi-stage GM-estimator. The GM6 estimator is based on 
robust mahalanobis distance (RMD) which uses minimum volume ellipsoid (MVE) as an 
initial of π–weight function (Rousseeuw 1985). The shortcoming of MVE is that it is not 
only taking a long computation running time, but tends to swamp some low leverage as 
high leverage points. Besides, the RMD which is based on MVE attempts to identify high 
leverage points without taking into consideration whether they are good or bad leverage 
points. Hence, the GM6-MVE considers the good leverage points as bad leverage points 
and its efficiency tends to decrease as the number of good leverage points increases.  

The weaknesses of GM6-MVE have prompted Habshah et al. (2021) to put 
forward another version of GM estimator which is called the Fast GM estimator which is 
based on Improvised Generalized MT (FIMGT). It is denoted as GM-FIMGT estimator 
The Fast GM estimator utilizing high breakdown point S-estimator as an initial estimate 

and using  𝜋 −weight function based on Fast Improvised Generalized MT (FIMGT). It 
has been shown that the GM-FIMGT is more efficient than the GM6 estimator. The only 
shortcoming of this method is that the FIMGT is based on index set equality (ISE). It is 
now evident that ISE is unstable as its algorithm depends on the selected initial subset, 
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h.  Midi et al. (2020) exemplified that the final estimator of location and scatter of (ISE) 
is equivalent to minimum covariance determinant (MCD) if the same initial subset is 
employed, otherwise the results will be quite different. Moreover, the computational 
running times for the FIMGT still quite long.  

 Motivated by the fact that employing the weighting function in the GM-FIMGT 
algorithm has shown to be more efficient than the GM6, our primary aim is to perform 
some modifications to the existing GM-FIMGT algorithm by integrating a weight function 
based on our new approach for the detection of influential observations (RFIID) to 
produce more efficient estimates with less computing times. The proposed GM estimator 
will be based on RFIID and it is denoted as GM-RFIID.  The proposed GM-RFIID 
estimator will be explained in detail in the following section.   
 

2.0 Methodology. 

 

Coakley & Hettmansperger  (1993) introduced GM6 estimator which has high efficiency 
at normal distribution, bounded influence property and high breakdown point. It  can be 
expressed as a solution of normal equations given by 

∑ 𝑑𝑖𝜓 (
𝑦𝑖 − 𝑥𝑖

𝑡𝛽̂)

𝜎̂𝑑𝑖
) 𝑥𝑖 = 0

𝑛

𝑖=1

                                       (1) 

where 𝜓 = 𝜌′ is an influential function and 𝑑𝑖𝑖
, 𝑖 = 1,2, … , 𝑛 is the 𝑖𝑡ℎ initial weight 

function.  
The GM estimators’ main objective  is to downweight HLPs which have large residuals. 
Coakley & Hettmansperger (1993) employed RMD based on MVE or MCD, using 

𝜒(0.95,𝑝)
2 𝑎𝑠 cut-off points.  Those detected HLPs will be assigned smaller weight while 

regular observations are given weight equals 1.0. 
Afterwards, they defined  the initial weight of the GM6 estimator as follows: 

𝑑𝑖 = min [1, (
𝜒(0.95,𝑝)

2

𝑅𝑀𝐷2
)] , 𝑖 = 1,2, … , 𝑛                (2) 

Bagheri & Habshah (2015) noted that this initial weight function inclines to swamp some 
low leverage points.  Another limitation of this weight function is that, the RMD only 
identify HLPs (good and bad). This implies that the detected HLPs will be assigned low 
weight irrespective of whether they are GLPs or BLPs.  Thus, as the number of GLPs  
increases, the GM6 efficiency  tends to decrease because the precision of the parameter 
estimates may be contributed by GLPs as noted by Rousseeuw  (1990).  This is the 
reason why the GM6 - estimate is less efficient because both GLPs and BLPs are 
downweighted.  The computation of GM6 estimator is very long since it uses MVE or 
MCD. This contributes to another weakness of GM6 estimator.  
 
Our propose GM-RFIID estimator begins by establishing an algorithm of detecting 
influential observations (IOs) with the main aim of reducing their effects. According to 
Belsley et al. [18], IOs are those observations which are either done alone or together 
with several other observations, have an adverse effect on the computed values of 
various estimates. As such, to get efficient estimates, only genuine IOs are down 
weighted (Dhann et al. 2017). Hence, an efficient weight function should be formulated 
so that only genuine IOs will be assigned with smaller weight, regular observations and 

GLPs is assigned with weight 1. Then, the proposed weight function, 𝑑𝑖 will be 
formulated as in (2). 
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The proposed GM-RFIID is briefly described according to the following steps: 
Step I:  Identify HLPs using DRGP-RFCH (see Habshah et al. 2021)  
Step II: Compute Robust and Fast Improvised Influential Distance (RFIID) and cut-off 

point of RFIID, denoted as 𝐶𝑃𝑅𝐹𝐼𝐼𝐷to detect IOs (not shown due to space 
constraint).  
Step III: Based on RFIID, Classify the observations into RO, GLO and IOs,  

R
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R
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Step IV:  Obtain the new initial estimate of our propose GM-FIID is given by 

𝑑𝑖 = 𝑚𝑖𝑛[ 1, (
𝐶𝑃𝑅𝐹𝐼𝐼𝐷

𝑅𝐹𝐼𝐼𝐷
)], 𝑖 = 1,2, . . . , 𝑛                            

where, 𝐶𝑃𝑅𝐹𝐼𝐼𝐷 is the cut-off point of RFIID 

Step V: Based on the standardized residuals and the initial weight (Step IV), compute 

the bounded influence functions for IOs, 𝑡𝑖 = 𝑒𝑖/𝑑𝑖. 

Step VI: Employ the weighted least squares (WLS) to estimate the parameters of the 

regression, 𝛽̂ = (𝑋𝛵𝑊 𝑋)−1𝑋𝛵𝑊 𝑌, where the weight 𝑤𝑖 is reduced for large 

residuals to get good efficiency (Tukey weight function is utilised in this paper). 

Step VII: Calculate the new residuals (𝑟𝑖) from WLS and repeat steps (1-6) until 

convergence  

3.0 Result: 
Simulation study and two real examples are illustrated in this section to show that our 
proposed method is more efficient than the OLS, GM6, GM-FIMGT and GM-RFIID.Due to 
space limitations, the results of simulation study are not presented. 

 Gunst and Mason Data Set 
The Gunst and Mason data set is our first example taken from Gunst and Mason (1980). 
This data set contains 49 observations, i.e. name of countries (Selected Demographic 
Characteristics of Countries of the World) and six independent variables (INFD, PHYS, 
DENS, AGDS, LIT, HIED) with response variable (GNP). Since the distribution of the 
GM-RFIID is intractable, bootstrap method is used to find the standard errors of its 
estimates.  The parameter estimates and SE of the estimates (in parenthesis) of the four 
methods are exhibited in Table 1. The median absolute deviation for the residuals (MAD) 
are also presented in Table 1.  
 



5 
 

 
Table 6.1: The parameter estimates, SE and MAD for for Gunst and Mason data Set. 

Variables 

Methods 

OLS GM6 GM-FIMGT GM-RFIID 

Parameter 

(Boot.SE) 

Parameter 

(Boot.SE) 

Parameter 

(Boot.SE) 

Parameter 

(Boot.SE) 

(INFD) -0.2323 

(0.2541) 

-0.4765 

(0.2460) 

-0.1946 

(0.1679) 

-0.1635 

(0.1107) 

(PHYS) -0.0063 

(0.2127) 

0.0158 

(0.2070) 

-0.0196 

(0.0990) 

-0.0199 

(0.0871) 

(DENS) -0.1640 

(0.6173) 

-0.2959 

(0.5303) 

-0.1209 

(0.4918) 

-0.0542 

(0.3843) 

(AGNS) 0.1483 

(0.5035) 

1.0451 

(0.9125) 

0.0725 

(0.4153) 

0.0136 

(0.4012) 

(LIT) 0.2473 

(0.2380) 

0.0658 

(0.1826) 

0.2269 

(0.1095) 

0.1950 

(0.1302) 

 (HIED) 0.4565 

(0.2346) 

0.4191 

(0.2213) 

0.2634 

(0.1058  (  

0.2905 

(0.0975) 

Intercept 

(GNP) 

0.0032 

(0.2932) 

0.0327 

(0.2263) 

-0.1724 

(0.1775) 

-0.2205 

(0.1745) 
MMAD 0.5498 0. 4731 

 

0.4574 
 

0.3943 
 

 

 
4.0 Discussion and Conclusion: 
The results of RFIID (not shown due to space limitation) reveal that the proposed RFIID 
technique diagnosed observations (1,4,7,25,31,41,42,45,46) as IOs while observations 
(3,7,20,37) as good IOs. The number of detected IOs will be utilised to determine the 
initial weights for GM-RFIID while the GM6s’ initial weight only depends on the number 
of detected HLPs irrespective of whether they are GLPs or BLPs. The results of Table 
1 show that the OLS gives the poor results. The results of GM6 is less efficient than the 
GM-FIMGT and GM-RFIID because GM6 gives smaller weight to HLPs irrespective 
whether they are good or bad leverage points. The good  leverage points should not be 
down weighted because they may contribute to the precision of the estimates as their 
presence  have no impact or less effect on the OLS estimates (see for instance; 
Rousseeuw and Van Zomeren, 1990; Andersen, 2008).  It is very interesting to observe 
that the GM-RFIID is superior compared to GM-FIMGT, GM6, and OLS estimators, 
evident by having the smallest standard error of the estimates and NMAD. The results 
suggest that the GM-RFIID did remarkably well when compared to other methods and 
it is consistent with the results of the simulation study.  
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